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The limits of technology expand the limits of human capabilities. The technology humans can 
create is fundamentally constrained by the materials used to build that technology. Nearly every 
technological epoch in human history has been enabled by breakthroughs in materials. Bronze, 
iron, plutonium, and, most recently, silicon all undergird novel ways of enriching—as well as de-
stroying—human livelihood. 

Johannes Gutenberg’s alloy of lead, tin, and antimony became the basis of movable type—the 
printing press—which, in turn, heralded the first information revolution in the 15th century. Move-
able type was the seed of modern civilization and the starting point of ideological, religious, and 
political turmoil. A few centuries later, other advancements in metallurgy (themselves spurred 
on by the more rapid dissemination of information enabled by the printing press) allowed for the 
invention of weight- driven clocks far more accurate than the water- driven clocks then in use.1 
Time itself, suddenly, could be measured scientifically. 

Isaac Newton would go on to use these weight- driven clocks for his experiments that shattered 
two thousand years of scientific dogma and birthed the Newtonian view of nature and human af-
fairs. Newton would not have deduced that gravity pulls objects toward the Earth at 9.8 meters 
per second with a water clock, after all. With weight- driven clocks, supervisors of the nascent 
18th- century industrial enterprises could suddenly measure labor productivity, thereby laying 
the groundwork for the impending era of industrial capitalism.2

Untold possibilities await within the discipline that today we call “materials science”—the explo-
ration of novel ways to configure matter to accomplish useful things. The macrohistory of this 
discipline mirrors that of many other domains of science—low- hanging fruit, plucked here and 
there, almost as if by chance—until around the late 18th and early 19th centuries, after which the 
pace of discovery picked up dramatically. All this was sustained until the mid- 20th century—but 
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then came the so- called Great Stagnation, a period of reduced productivity, across both science 
and the economy, that has persisted for the past half- century. 

Today, materials science finds itself in an all- too- familiar predicament. The low- hanging fruit has 
seemingly all been plucked; so, too, has the mid- hanging fruit. Discovery is getting harder, and, so, 
the methods by which discoveries are made must be reimagined. 

Artificial intelligence (AI) shows great promise as a foundation for that reimagining. Yet too often, 
AI is bandied about as a panacea, offering near- magical computational insight. The reality is far 
from that simple. AI, for science, is, paradoxically, both over-  and underrated. It is overrated as a 
near- term “miracle machine,” yet it is underrated in its long- term potential. 

AI should be understood, in this context, as a foundation for the reimagining of materials sci-
ence as an enterprise. But a foundation alone does little, just as the foundation of a home is not 
equivalent to four walls and a roof. Indeed, a new foundation requires new structures to be built 
upon it. Similarly, to maximize the potential of AI, materials science will need to adopt new prac-
tices, methodologies, assumptions, and aspirations. The academic, corporate, governmental, and 
philanthropic funders of materials science will need to do the same to take advantage of new op-
portunities presented by AI. AI allows scientists to generate far more ideas for breakthroughs, 
but in order to achieve those breakthroughs, scientists’ ability to test those ideas in experiments 
will need to scale along with AI. Materials science will need to transition from an artisanal scale 
to an industrial scale. The practices, equipment, and labs of materials science will all need to be 
transformed to reflect this new reality.

Nothing about this transformation will be easy, and none of it will happen overnight. This report 
will focus on what public policy and research can do to accelerate the transition from artisanal-  to 
industrial- scale science. It will begin with a brief overview of materials science as a modern sci-
entific enterprise and will attempt, in particular, to illustrate the enormous economic and techno-
logical potential of the field. It will then examine the promise of AI in advancing materials science 
as well as the limitations of existing applications of AI to the practice of materials science. Then, 
it will present an agenda for public policy and public scientific research funding—an agenda that 
will allow materials discovery and testing on a far greater scale than is possible today. The agenda 
is focused on five priorities: 

1. Articulating the role of the Department of Energy (DOE), the National Science Founda-
tion (NSF), and other agencies 

2. Maximizing the utility of preexisting public datasets relevant to materials science

3. Training materials science foundation models

4. Researching and constructing robotic cloud laboratories to enhance experimental 
throughput
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The Promise of AI and Materials Science

What is materials science?
Materials science is the discipline that investigates “the relationships that exist between the struc-
tures and properties of materials.”3 Materials engineering, by contrast, involves using the discov-
eries of materials scientists to create novel products, processes, and other practical innovations. 
This paper focuses principally on materials science in the hope that materials engineers will have 
a far larger toolkit in the decades to come. 

Almost every part of the built environment of advanced capitalist societies is downstream of an 
advancement in materials science—and often not one, but dozens, hundreds, or thousands of 
separate advancements. Materials science encompasses a vast range of subfields and related sci-
entific domains. 

New materials can be used to make better battery anodes and cathodes, enabling longer- lasting, 
faster- charging, safer, and more reliable laptops, electric vehicles, and smartphones—and, over 
the long term, a more resilient electrical grid through utility- scale energy storage. New kinds of 
magnets are bringing innovations like commercially viable nuclear fusion closer to reality, inch 
by inch. For advances in semiconductor speed and efficiency to continue, materials science will 
play a starring role. Moore’s Law, after all, is not a law of nature—it is a law that humans enforce, 
and we do so through ingenuity. Currently, nearly every mass- produced good relies upon a bevy 
of industrial materials: lubricants, adhesives, bindings, coatings, catalysts, and more. Each of these 
materials has its own sizable subfield of materials science. 

What unites this staggeringly diverse range of intellectual inquiries is a process: Materials sci-
ence is a search over a near- infinitely vast landscape of potential materials. There are more ways 
to assemble matter than there are atoms in the universe. Thus, it is impossible to take the naïve 
approach of “trying everything.” Prioritization is essential, informed by knowledge, heuristics, 
intuitions, and tools that enable scientists to refine their search. It is precisely here that AI holds 
the greatest promise, yet the exact nature of this promise is often misunderstood. 

The role of AI in science
Popular media often imagines AI as a kind of genie, furnishing superhuman insights on a grand 
scale. AI is often given the honor of being the subject of a sentence: “AI does this,” “AI invents 
that.” This even occurs in materials science. A 2023 blog post from Google DeepMind, summa-
rizing the company’s GNoME model for materials science (more on that topic below), said that 
the model’s “discovery of 2.2 million materials would be equivalent to about 800 years’ worth of 
knowledge.”4

Perhaps one day. But for now, the reality is more complex. 
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First, it is worth disentangling competing definitions of AI. In contemporary vernacular, AI is often 
used almost metonymically to refer to large language models like OpenAI’s ChatGPT, Anthropic’s 
Claude, or Meta’s Llama. These generally useful models are research artifacts released by their 
creators on the path toward “artificial general intelligence,” (AGI) a loosely defined concept refer-
ring to AI systems whose intelligence in all domains matches that of analogous human experts. 
Such an invention would indeed have profound effects on all science, and some—including the 
companies themselves—believe it is imminent. Yet because it remains speculative and under speci-
fied, AGI will not be a focus of this study. Language models will figure slightly, predominantly in 
the section focused on automated laboratories. 

Instead, this paper discusses AI in reference to deep neural networks trained on enormous vol-
umes of data with large amounts of computational power. The above- mentioned language mod-
els certainly are examples of this, but the field is much larger than just large language models. 
Specifically, this paper focuses on deep neural networks trained on huge quantities of scientific 
data—in our case, data relating to the structure, properties, and behavior of materials. Examples 
of recent foundation models in materials science include DeepMind’s GNoME and Microsoft’s 
MatterGen, as discussed below. 

AI models of this kind have already been used to great effect in a diverse range of scientific fields—
perhaps most notably in biology. Google DeepMind’s AlphaFold, which debuted in 2019, pre-
dicted—with better accuracy than any other computational method at the time—what protein 
structures would be made from specific amino acid sequences.5 AlphaFold 2, released in 2021, 
achieved significantly higher levels of accuracy than the original.6 And AlphaFold 3, released in 
2024, has the expanded ability to model the interactions between proteins and other biomolecular 
compounds and predict the structure that results when proteins bind with other biomolecules.7 
In other domains of biology, deep neural networks have been used in combination with genomic 
data (nucleic acid sequences) to predict gene sequences and even the full genomes of novel forms 
of prokaryotic (single- celled) life.8 These are just a few of the ways in which deep neural networks 
are being applied in biology. 

Though the specifics differ, deep neural networks are all predictive models—that is, they are fed 
a sequence of input data, perform mathematical operations to transform that data, and output a 
related prediction, such as the structure of a protein, the way biomolecules will interact, or the 
genetic sequence of a species. The mathematical operations performed on the input data are 
primarily learned through the training process, which involves the model making predictions 
on input data where the correct output data is known. For protein structures, this would be, for 
example, proteins whose amino acid sequences and resultant three- dimensional structures are 
both established. 
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Critics of deep learning (the use of deep neural networks) have argued that deep neural network 
models are simply “pattern matching,” and that they will struggle to generate valid results when 
operating “out of distribution,” or in domains with no verified data on which to train. 

By and large, these criticisms underrate the nature of the “pattern matching” that happens within 
a well- trained deep neural network. It is well understood by now that large language models learn 
high- order concepts and abstractions, and recent advancements in “mechanistic interpretability” 
have proven that contemporary language models have a rich understanding of an enormous range 
of human- interpretable concepts.9 It has even been suggested that modern language models pick 
up on structures in language that humans do not readily understand.10 Indeed, the ability of neu-
ral networks to learn the underlying structure of their training data has been theorized since the 
early days of the field.11

When mechanistic interpretability techniques are applied to biological foundation models, they 
reveal that these models, too, pick up on high- order abstractions in biology. In other words, de-
spite not being “told” about high- order biological concepts that humans have discovered through 
centuries of experimentation, deep neural networks were able to discover them simply from the 
raw data.12 And, just as researchers in natural language processing suspect that current language 
models may understand even higher- order concepts for which humans have only a partial vo-
cabulary, developers of a recent protein model called ESM3 suggested the same may be true in 
biology—specifically, that deep neural networks may be learning to simulate evolution: 

We have found that language models can reach a design space of proteins that is distant 
from the space explored by natural evolution, and generate functional proteins that would 
take evolution hundreds of millions of years to discover. Protein language models do not 
explicitly work within the physical constraints of evolution, but instead can implicitly 
construct a model of the multitude of potential paths evolution could have followed. . . .
 ESM3 is an emergent simulator that has been learned from solving a token prediction 
task on data generated by evolution. It has been theorized that neural networks discover 
the underlying structure of the data they are trained to predict. In this way, solving the 
token prediction task would require the model to learn the deep structure that determines 
which steps evolution can take, i.e. the fundamental biology of proteins.13

Neural networks are not mere stochastic parrots, uselessly mimicking their training data. Rather, 
they learn salient concepts in their underlying training data, and that implies that their utility to 
all domains of science—materials science included—will be significant. Yet neural networks are 
not oracles; despite AlphaFold having existed in increasingly advanced forms for half a decade, 
it and other models are not magically generating perfectly valid medicines. Rather, AlphaFold’s 
predictions—even sometimes ones the model gives with high confidence—are often flawed.14 Al-
phaFold and other biological foundation models are tools that scientists use to refine their search 
for new therapeutics or other useful biomolecules. Instead of being used to circumvent costly and 
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time- consuming experiments, deep learning models can guide scientists toward the most produc-
tive possible experiments. 

Deep learning will likely continue guiding scientists toward experiments in materials science for 
the foreseeable future. 

AI and materials science
With both the potential and the limitations of deep learning in mind, we will now look at the ex-
isting applications of AI to the field of materials science. While this is a nascent field compared to 
biology, a great deal of work has already been done. In the past two years, large corporations such 
as Microsoft15 and Meta,16 as well as academia17have made significant progress in applying deep 
learning techniques to materials science research.

One of the recent prominent contributions to this field has already been mentioned: Google Deep-
Mind’s graph networks for materials exploration (GNoME).18 GNoME exemplifies both the prom-
ise and the pitfalls of deep learning in materials science. A basic description of the approach taken 
by Google DeepMind and the critical reaction of some in the materials science community will, 
therefore, be instructive. 

At its core, the GNoME project uses graph neural networks—a form of deep neural networks used 
to represent entities (nodes in the graph) and the relationship between the entities (these are 
referred to as “edges” and can be thought of as lines connecting the nodes). GNoME represents 
each atom in a compound as a node in the graph and encodes the distances between atoms as the 
edges. In this way, the network is trained on not just raw sequences of atoms in a compound but 
instead the structure of that compound. 

The core graph neural network in the GNoME project predicts the energy of a crystal structure. 
Lower- energy crystals are more likely to be stable in real life, so, by finding the low- energy con-
figurations of a given set of atoms, the model is (in theory) predicting compounds that are likely 
to exist and be useful in the real world. This model does not, on its own, predict new material 
structures. Instead, it predicts the energy of the structures it is fed. 

The researchers at DeepMind used a variety of methods for generating new potential materials 
(crystal structures) and fed those ideas into the model to form a dataset of crystals with predicted 
low energies. Crystals with predicted low energies were “repeatedly” validated using density func-
tional theory (DFT), a computationally expensive method of validating molecular compounds that 
is based on formal physics rather than neural networks.19 This is the source of the headline result of 
the paper: DeepMind’s GNoME system discovered 2.2 million “new crystals” and 380,000 “stable 
crystals.” DeepMind researchers took their claim even further when they asserted in a blog post 
that they had discovered “millions of new materials.” 
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Materials scientists have criticized GNoME and other applications of AI to materials science.20 
Scientists Anthony Cheetham and Ram Seshadri point out that the data on predicted stable crys-
tals from GNoME are often organized in a way not useful to scientists, and that the data include a 
large number of radioactive materials “that are unlikely to have any utility in the materials world.” 
This flaw, perhaps, can be attributed to the deep learning ethos that undergirds DeepMind: Take 
as much data as possible, input that data into a neural network, and trust that deep learning will 
work. It must be said that while this approach has worked spectacularly well over the past decade 
in other situations, it occasionally results in the inclusion of low- quality training data. 

More troublingly, Cheetham and Seshadri suggest that a large number of the predicted compounds 
are trivial variations on already- known materials. As the authors write, “We have yet to find any 
strikingly novel compounds in the GNoME . . . listings.” They instead suggest that, rather than 
“discovering millions of new materials,” the GNoME paper (and, by extension, other AI- based 
approaches to materials science) is “a list of proposed compounds.” In their view, a compound 
is a proposed configuration of matter, while a material is a configuration of matter that has been 
empirically shown to have utility. Just as with AlphaFold, a computational prediction (made us-
ing AI or other methods) is not, in itself, a new discovery. It is, if used well, a guide to refining a 
material scientist’s search through vast possibilities. 

To summarize, the application of AI in biology should give us strong theoretical and empirical 
reasons for believing it can be productively applied to materials science. Existing uses of AI in 
materials science have been intriguing but have yet to live up to the hype or the potential. We have 
strong evidence to believe, based on the widely observed neural network “scaling laws,” that larger 
materials science foundation models, trained on more data and with more computing power will 
yield significant performance improvements. But in all domains of science, experimental valida-
tion of computational predictions will remain key for at least the foreseeable future, if not indefi-
nitely. No matter how capable the neural network, the world is simply too complex to simulate 
computationally, and if we are going to use novel materials to build new aircraft, energy- generation 
equipment, and other critical technology, we will need to confirm the properties of those materi-
als using real- world experiments. 

Thus, larger neural networks alone will not allow materials science to grow to industrial- scale 
discovery and synthesis of novel compounds.  This growth also requires a way to greatly expand 
“experimental throughput,” or the number of experiments a given scientist can perform over a 
period of time. This core intuition forms the basis of the policy agenda to be discussed. 

Why Government Should Invest in Materials Science
Materials science has historically delivered substantial economic benefits, but it is difficult to 
measure those benefits objectively. One reason it is difficult to measure those economic benefits is 
that economic growth is driven not just by the discovery of a new material, but by the technologies 
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that emerge from it. Some modern industries are fundamentally founded on materials- science 
breakthroughs, without which modern life would not be the same. The semiconductor industry 
is a good example. Its value is estimated to have been worth more than $600 billion in 202321 and 
is projected by McKinsey to double in size by 2030.22 

Another reason for the difficulty of measuring the economic impact of materials discoveries is 
that they often take considerable time to come to market. The first synthetic plastic was invented 
in 1869, but, at the time, it was only used in small- scale applications because of flaws in its initial 
synthesis (notably, its flammability). Only decades later, in 1907, with the invention of Bakelite,23 
did synthetic plastics come to be widely used. They were then refined and used primarily in in-
dustrial processes, only reaching widespread consumer use in the 1920s.24

Similar stories abound in materials science. Velcro, pioneered in France in the 1940s, had only 
modest usage until the 1960s when it was prominently used by NASA for the Apollo program. 
It was not until the 1970s that Velcro became widely used in consumer goods.25 Lithium cobalt 
oxide, another example, was first synthesized in 1958,26 but it would not be until the 1970s that 
researchers realized its potential as a cathode in a lithium- ion battery.27 And it would take three 
more decades until lithium- ion batteries became common in daily life. The lithium- ion battery 
industry today is estimated at approximately $54 billion.28 

Other times, materials are invented, used, fall out of favor, and then rediscovered. The glass ma-
terials company Corning developed Chemcor glass—a chemically strengthened variant of glass—
in the 1960s, and it was used until the 1990s in industrial settings and specialty applications like 
racecars. Its usage largely stopped in the 1990s until, a bit more than a decade later, Apple would 
use the glass for the display covers on their nascent iPhone. Marketed today as Gorilla Glass, the 
material has been used on billions of mobile devices worldwide.29 

Materials science discoveries sit on a wide spectrum of novelty and impact. Many discoveries are 
relatively simple iterations within existing classes of material. But even incremental improvements 
can have an outsized impact. For example, large numbers of iterative developments in alumino-
silicate zeolites led to the synthesis of ZSM- 5, which eventually became widely used in a broad 
range of industrial applications, most notably breaking down large hydrocarbon molecules, also 
known as “cracking.”30 Other discoveries are serendipitous breakthroughs, where researchers are 
looking for something entirely different and stumble upon a truly novel material. TEFLON, for 
example, was discovered by accident when researchers at DuPont were investigating chlorofluo-
rocarbon refrigerant gases.31 

A common throughline in all these examples is the significant time it takes for novel materials to 
diffuse throughout industry and into broad- based usage. It takes time for firms to discover the uses 
of newly discovered materials, and it takes time to learn to mass manufacture new materials, re- 
engineer industrial processes to get them into products, and more. Ben Reinhardt has suggested 
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that the time for transformative new materials to make it from the lab to widespread usage is ap-
proximately 50 years and that this pattern is “shockingly consistent.”32 The economist Matt Clancy 
has argued that the benefits of basic research—going from lab experiments to a commercialized 
product—often take approximately 20 years, on average.33 This significant time delay underscores 
the usefulness of public funding for materials science research; private sector- funded research 
often requires a much shorter time horizon to commercialization.

Fundamentally, much of materials science research is basic research and development. Economists 
have consistently found that research and development yield high returns over time. A 2023 study 
by the Federal Reserve Bank of Dallas found that government- funded, nondefense research and 
development yielded a return of between 150 percent and 300 percent during the postwar period.34 

However, not all materials science research is “basic” research and development. Some, like in-
novations in battery chemistry or solar panel materials, can be commercialized more readily. 
Still, as we have seen, many novel materials do take considerable time to reach the level of mass 
manufacturability and commercialization required to generate a substantial consumer surplus. 

Indeed, it is because of the long timelines to commercialization that many areas of materials sci-
ence are under- invested in by the private sector. Academic, philanthropic, and government sup-
port is often required to fund this basic research in the absence of a private sector outlier, such as 
Bell Labs, whose decades of foundational research in a variety of fields (including materials sci-
ence) was enabled by the monopoly on phone service granted to AT&T by the federal government. 

Thus, we have strong evidence that materials science innovations can deliver meaningful eco-
nomic growth, that government investment in research and development (which can include 
materials science) often yields high returns, and that the private sector is likely to under- invest 
in core aspects of materials science—particularly those without near- term opportunities for com-
mercialization. 

An Agenda for Accelerated Materials Discovery 
To advance the pace and quality of materials discovery using AI, federal policymakers should 
pursue the following three objectives: 

1. Build cross- departmental materials science datasets and data infrastructure 

2. Partner with the private sector to develop materials science foundation models or, where 
sensitive data is being employed, build such models within government

3. Create a competitive bidding process or “grand challenge” for private firms to offer pro-
posals on the creation of robotic materials science labs (also referred to as “self- driving 
labs”)

More detail on each objective follows, and proposed budgets are included at the end of this section.
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Build materials science datasets 
Any AI model is fundamentally limited by the quality of data on which it is trained. Indeed, one 
way to think of AI models is as a “compression” of their training data.35 A neural network’s “intel-
ligence” is derived from being tasked with learning a training dataset that contains more discrete 
facts than can be stored. To “learn” the dataset, the neural network needs to identify “shortcuts”—
patterns. 

Current datasets for materials science are small in comparison to those used for training language 
models and even biological foundation models. Meta’s current frontier language model was trained 
on 15 trillion tokens or about 11 trillion words.36 A recent DNA model was trained on 300 billion 
tokens—single nucleotides—in this case,37 and the largest publicly known protein language model 
was trained on 771 billion tokens.38 By contrast, the largest single publicly available dataset for 
inorganic materials science contains 110 million data points.39,40

The federal government houses some of the richest materials science datasets in the country, if 
not the world. The Materials Project, one of the largest and most widely used materials science 
datasets, is supported by the Department of Energy, the National Science Foundation (NSF), as 
well as Lawrence Livermore and Argonne National Labs (themselves DOE user facilities).41

Independent from the Materials Project, DOE National Labs, particularly Argonne, Lawrence 
Livermore, Los Alamos, and Oak Ridge, house vast repositories of materials science data. For ex-
ample, Los Alamos’s Neutron Science Center, Oak Ridge’s High Flux Isotope Reactor, and Spall-
ation Neutron Source are among the most powerful neutron scattering facilities in the world and 
can be used to generate detailed atomic structure data for a wide range of materials.42 The DOE’s 
Basic Energy Sciences Program funds hundreds of materials science experiments and other re-
search across the country.43 All of these experiments and facilities are sources of valuable data 
that can, at least in principle, be used for training foundation models.

Outside of DOE, the National Institute of Standards and Technology (NIST) is another source of 
vast materials science training data. NIST’s Materials Measurement Laboratory maintains refer-
ence databases of material properties.44 NIST contributes to the multi- agency Materials Genome 
Initiative with extensive materials informatics databases, as well as standards for ensuring the 
quality and interoperability of materials datasets.45

The NSF supports research in materials science, as in most other domains of science. The NSF 
also funds facilities that collect ample materials science data, such as the National High Magnetic 
Field Laboratory at Florida State University.46 Numerous other agencies, including the National 
Aeronautics and Space Administration (NASA), the National Nuclear Security Administration 
(NNSA), and US Geological Survey (USGS), and the Department of Defense, among others, also 
collect and maintain potentially valuable materials science data.
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Unfortunately, there have been barriers to using this government data to train neural networks 
due to the fact that the datasets are housed in different agencies in different formats with differ-
ent levels of quality and quantity, and often with terms of access and use that prohibit interagency 
sharing. Many datasets of material characteristics are maintained by NIST, for example, might be 
useful for pre- AI scientific and industrial applications, but are not nearly large enough to support 
AI model training.47

Even within a single agency, decentralized storage of data, outdated data infrastructure, and oner-
ous data access and retention policies can make it challenging to use scientific datasets to their 
full potential. A 2023 DOE report that details the department’s challenges with data notes, for 
example, that DOE facilities produce so much data that they “are forced to roll- off [delete] data” 
due to a lack of sufficient storage capacity. The report goes on to describe the DOE’s “fragmented” 
data infrastructure and access policies, observing that they “lead to repetition of effort and dilu-
tion of capabilities that weaken the return on DOE’s investment in data production and storage.” 
Unsurprisingly, the analysis further observes that “in almost all cases, the requirements . . . of 
large- scale AI model training are not contemplated.”48

These challenges were, in theory, among those meant to be addressed by the Materials Genome 
Initiative (MGI). Created in 2011 by President Obama, the broad aim of the MGI was to dramati-
cally reduce the time it takes to bring new materials from the lab to the market and to simultane-
ously reduce the cost of doing so.49 One of the primary ways the initiative planned to accomplish 
these goals was to create “data and interoperability standards.” Numerous productive advance-
ments, such as the NIST Materials Data Repository, were driven at least in part by the MGI. As a 
multi- agency initiative, funding and operational support was spread across approximately a dozen 
different federal departments.

Unfortunately, so, too, was leadership. And without centralized leadership, the MGI has struggled 
to accomplish some of its goals—particularly those requiring cross- agency collaboration and in-
formation sharing. The MGI’s 2021 Strategic Plan, which surveys the MGI’s first decade, notes the 
initiative’s success at generating new materials science datasets, but acknowledges that “there is 
still a great deal of work to be done to achieve the desired levels of integration and utility for the 
materials R&D enterprise.”50

A variety of reports and assessments on the MGI have made constructive recommendations for 
improving the state of data infrastructure.51 Among these are ensuring that the NSF mandates that 
researchers adhere to FAIR (findable, accessible, interoperable, reusable)52 guidelines for data 
management whenever possible, and that grant recipients complete data management plans to 
document the steps they will take to adhere to FAIR standards. 

Other research has argued that even deeper changes to the practices and incentives of the scientific 
enterprise are required for leveraging AI in materials science. One paper, for instance, points to the 
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need for a “transformation of scientific data governance toward AI” involving “researchers, fund-
ing institutions, publishing bodies, research equipment suppliers, data management platforms, 
and standardization organizations” whose “sustained attention and collaborative efforts are es-
sential for achieving this transformation.” The authors suggest creating incentives to recognize 
datasets as valuable contributions to the academic field, compared to the current incentive system 
that primarily favors papers and publication- worthy results. They also suggest making citation 
metrics for shared datasets and creating other academic impact measures for data contributions.53

A key recommendation to increase the usability of government datasets is that the President’s Of-
fice of Science and Technology Policy designate a formal individual or office to ensure the imple-
mentation of these data- related efforts across the federal government. Ideas for how to increase 
access to usable datasets are well- circulated, however, they are difficult to execute and fund. In 
other research on this topic, I estimate the cost of building a unified and appropriately secure data 
infrastructure for the DOE at approximately $100 million.54 If funded and developed successfully, 
this shared data infrastructure could be the foundation for sharing materials data from other agen-
cies and government- funded academic research.

Creating materials science foundation models
Just as materials science training data are small compared to data in other areas of AI, materials 
science foundation models themselves are often far smaller than those in domains like natural 
language processing or biology. Frontier language models range from thirty billion to over one 
trillion parameters.55 The DNA model Evo is seven billion parameters,56 and the protein language 
model ESM3 is ninety- eight billion parameters.57

Meanwhile, the top- performing models on MatBench, a benchmarking website for materials sci-
ence AI models, are, at the time of writing, between hundreds of thousands or tens of millions of 
parameters. The best- performing model, from Meta, is a thirty- one million parameter transformer, 
using the same basic architecture that is used by the multi- billion parameter models mentioned 
in the preceding paragraph.

The difference in parameter count can be misleading. Materials science models can be smaller 
than models used in, for example, natural language processing because materials science data is 
generally structured and lower dimensional, and the predictions the models are trained to make 
are comparatively simpler (predicting the energy of a crystal, say, versus predicting thousands of 
words of a sequence of text).

Yet, if the past decade of the deep learning revolution has taught us anything, it is that the larger 
the scale—model size, training data, and computational power used to train models—the more 
remarkable results deep learning can deliver.58 The relationships between these variables—and 
their tendency to deliver more performant neural networks when increased in tandem—have been 
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referred to as “scaling laws.” While not laws of nature, scaling laws have been observed across a 
wide range of data modalities, including in scientific data. This implies there is substantial low- 
hanging fruit to be gained simply from increasing the size of materials science models, so long as 
more training data is available. 

While the training of frontier language models is computationally expensive and has required 
the largest amalgamation of computing resources ever assembled, materials science models can 
likely be scaled up from their current frontier with far less computing power. GPT- 2, a 124 mil-
lion parameter transformer from 2019, can today be trained for approximately $20 in around 90 
minutes using cloud computing services.59

Current materials science models from large technology firms, such as the Microsoft MatterGen 
and Google DeepMind’s GNoME, were produced in collaboration with US national labs (Lawrence 
Livermore in the case of GNoME, and Pacific Northwest National Lab in the case of Microsoft). 
Continued collaboration with AI companies on next- generation materials science models is advis-
able for national labs because doing so allows the government to bring the best possible private- 
sector expertise to bear and to maximize the efficiency of public spending by having private firms 
bear at least some of the cost of model training.

Broadly speaking, materials science- based models fall into two large categories. Some models can 
predict a compound’s structure based on desired characteristics (thermal performance, strength, 
flexibility, etc.)—these are often called “inverse design” models. Others predict various charac-
teristics of a given input compound. Both types of models are useful, and they can both be used in 
combination with more traditional and computationally expensive simulation methods such as 
density functional theory (as discussed above in the example of the GNoME paper).

In addition to being used alongside more traditional computational modeling methods, materials 
science models can also be combined with other kinds of AI models. For example, a recent paper 
from DeepMind described the combination of an AI diffusion model (a specific kind of model, 
also used in the latest version of AlphaFold) used to generate crystal structures, a graph neural 
network used to make predictions about those generated structures, and a language model that al-
lows natural language input. Together, the system allows users to input desired material properties 
in natural language and generate (potentially) workable crystal structures along with predictions 
about that crystal’s real- world characteristics, such as its formation energy.60

Just as with materials data, it is better for the scientific enterprise if these models are broadly 
available to the public or, at least, to the academic community. Indeed, materials science models 
should be designed and trained with public release in mind. The existence of a new tool does not, 
in itself, accomplish much: It is people using tools that creates utility and new knowledge. Viewed 
in this light, public disclosure is a benefit to scientific discovery, not a cost. Thus, materials science 
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foundation models made by the government should be made available to at least the scientific 
community, if not the general public.

There may be examples of AI applications that require sensitive training data or whose output 
may not be useful to a broad range of academic or corporate users. For example, the DOE houses 
an enormous amount of data related to nuclear weapons, primarily through the NNSA, that is 
both highly sensitive and only useful to DOE itself and a small range of other actors. Models us-
ing data of this kind will have to be trained in- house if they are deemed desirable. This under-
scores the importance of ensuring a shared data infrastructure—built with AI model training in 
mind—throughout the federal government, with different security parameters for data of differing 
sensitivity levels.

Constructing self- driving labs
The predictions of any AI foundation model for science are just that: predictions. To be useful, 
they must be tested. And even if models become so good that their predictions are nearly perfect 
or otherwise highly reliable, there will still be the nontrivial process of learning how to produce 
the compound, even in artisanal batches. Just as with any complex production process, or even 
cooking just a simple meal, the specific sequence and manner in which steps are taken greatly 
affects the final product. Learning how to synthesize a novel material is itself an exceptionally 
high- dimensional problem, requiring many iterations of experiments to complete.

Turning an AI- predicted material into a real- world experiment can be split into two broad steps: 
synthesis and characterization. Synthesis is the process of making an (often) artisanal amount of 
a desired novel material. Characterization is assessing the relevant properties of that material, 
often comparing them against predictions (in our case, the predictions of an AI model).

Synthesis involves developing a plan for producing the compound, testing that plan, and making 
iterative adjustments to the process based on real- world results. The process inherently involves 
trial and error, often with small iterations to targeted portions of highly repetitive steps. Charac-
terization, at its heart, is about measurement, whether measuring structure (with X- ray diffraction 
or microscopy), chemical composition (using various forms of spectroscopy), thermal properties 
like melting point or heat capacity (using differential scanning calorimetry), and electrical prop-
erties like conductivity (using a four- point probe).

Both of these broad steps are susceptible to automation, as has been pointed out in numerous 
papers.61 Materials science labs that automate these steps are often referred to as “self- driving 
labs.” While the idea of a self- driving lab is not new, recent advancements in robotics hardware, 
AI- based computer vision software, and even AI agents to orchestrate scientific experiments have 
brought this vision far closer to reality.
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In just the past few years, self- driving labs have crossed the threshold of “proof of concept” and 
have begun to yield real results. Some small- scale self- driving labs have already been built and have 
generated results published in scientific research. Researchers recently used autonomous software 
and hardware to discover, test, and produce novel solid state laser materials that are best- in- class 
for certain use cases.62 The A- Lab, a small- scale self- driving lab at Lawrence Livermore National 
Lab, successfully synthesized AI-generated materials.63 The University of Toronto’s Matter Lab 
has produced both software64 and hardware65 platforms for automated materials discovery and 
synthesis.

Even more intriguingly, large, generalist, multimodal AI models like ChatGPT are reaching the 
level of expertise where they, too, can play a key role in orchestrating experiments. Current fron-
tier models like OpenAI’s GPT- 4o and o1- preview and Anthropic’s Claude 3.5 Sonnet are ap-
proaching and sometimes exceeding human expert performance at a variety of science, technol-
ogy, engineering, and mathematics benchmarks.66 For example, 3.5 Sonnet scores 65 percent on 
the PhD- level GPQA science benchmark, just behind human domain expert performance of 69 
percent; OpenAI’s o1 scores 78 percent. And new model features, such as the ability to fully oper-
ate a computer as a human would (recently introduced by Anthropic),67 mean that, increasingly, 
the most advanced generalist AI models will be able to serve as “automated graduate students.”

While these generalist models may not be able to autonomously ideate and execute experiments, 
they can be experimented with as hour- to- hour and day- to- day overseers of experiments con-
ducted in self- driving labs. In this workflow, human scientists would provide the experimental 
goals and the overarching framework for, to give an example, synthesizing a specific compound 
whose structure was predicted by another AI model. A self- driving lab could begin carrying out 
initial synthesis steps and provide data to the automated graduate student. The automated gradu-
ate student could then suggest appropriate iterations to the experiments, while holding, for ex-
ample, the entire relevant academic literature in its active attention window simultaneously. Many 
current models have sufficient context windows to hold entire bodies of academic literature in 
their attention at one time, as well as the visual understanding to interpret charts and graphs.68

Meanwhile, robotics is becoming more sophisticated—often driven by advancements adjacent 
to those seen in generalist AI models. Recent systems from Google DeepMind69 and the startup 
Physical Intelligence,70 for example, combine internet- scale image and text data (vision- language 
models) with learned robot actions to train generalist robotic models. These models are gener-
alists, not just because they can (in principle) operate in a wide range of environments to do a 
variety of tasks, but because they embody a range of different robotic hardware with intelligence. 

In all cases, there are challenges to building self- driving labs beyond automation per se. Materials 
characterization relies on a range of measurement tools such as scanning electron, transmission 
electron, and atomic force microscopes, X- ray photoelectron spectroscopes, and diffraction tools. 
Many of these tools are exclusively designed for artisanal- scale materials science and cannot be 
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easily scaled to industrial- scale materials characterization. They are designed to analyze one or a 
handful of samples at a time and thus are not designed for parallel processing of tens, hundreds, 
or even thousands of samples. One of the bottlenecks to scaling materials science may well be the 
creation of new metrology tools.

Given the number of unanswered questions, the ideal way to pursue the construction of a ma-
terials science self- driving lab is to allow the private sector to offer a diverse range of ideas in a 
competition for a federal grant. Charles Yang has suggested a “Grand Challenge” model, akin to 
the Defense Advanced Research Projects Agency (DARPA) autonomous vehicle grand challenges 
of the early 2000s.71 This is a model that has yielded results in the past. And because much of the 
expertise in robotics, AI, and materials science itself lies outside of the federal government, it is 
optimal to take an approach that allows for private firms to competitively bid, or to collaborate, 
for the opportunity to construct government- funded labs.

Another approach would be a more traditional public- private partnership. This could be facili-
tated using the DOE’s new Foundation for Energy Security and Innovation, a foundation that 
simplifies the process of creating partnerships between private firms and government agencies 
and creating government fellowships for private sector talent.72 DOE would be a natural locus 
for this partnership because of its central role in federally funded materials science research and 
because it is a hub for materials science datasets. There are already small- scale self- driving labs 
at both Argonne and Lawrence Livermore, and these facilities could be logical starting points for 
larger initiatives. In addition, the DOE already has experience managing scientific resources that 
are used by researchers nationwide.

Estimated Budget
Table 1 shows an estimated budget for achieving all three goals described above. This funding 
could be apportioned at once or over a period of years. Furthermore, some of the individual bud-
get items could likely be shared between the public and private sectors.

Conclusion
This paper presents a vision for the transition of science from the artisanal scale to the industrial. 
If executed successfully, the plan described here could enable orders of magnitude more materials 
science experiments to be conducted annually at a far lower cost. Some of the results of that are 
predictable: more efficient industrial processes, better batteries, more durable consumer goods. 
Other results seem more distant possibilities from our vantage point today: better magnets to make 
commercial nuclear fusion a reality, or superior ceramics to enable cheaper spacecraft and hyper-
sonic missiles. Even others seem truly outlandish: room- temperature superconductors, on their 
own, could represent an innovation as significant as steel, internal combustion, or electricity. But 
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there was a time when every radical new invention seemed impossible or outlandish; the history 
of science and technology is making impossible things feasible, and eventually, commonplace.

As we have seen, many materials science innovations are the result of thousands of iterative ad-
justments to existing classes of materials. Others are the result of serendipity. We cannot, a priori, 
know the process by which the next big discovery will come, so the best way forward is to get far 
more shots on goal. The more we try, the higher our likelihood of success. And the plan presented 
here has exactly this objective at its foundation. 

TABLE 1. An estimated budget for achieving the three policy objectives

OBJECTIVE SUB-CATEGORY
ESTIMATED 
COST DESCRIPTION/JUSTIFICATION

1. Cross-Departmental 
Data Infrastructure 
($130M)

Core Data 
Infrastructure

$50M Building scalable storage clusters to retain 
and serve large volumes of materials data to 
address current data bottlenecks.

Data Cleansing, 
Standardization, and 
Integration

$30M Standardizing heterogeneous file formats into 
AI-ready datasets; ensuring FAIR compliance.

Cross-Agency 
Data Sharing and 
Governance Platform

$30M Creating a unified portal for cross-agency 
data sharing; includes design, coding, security 
audits, and hosting.

Cybersecurity and 
Access Control

$20M Implementing strong partitioning and 
protection for sensitive data, including for 
nuclear-related materials.

2. Materials Science 
Foundation Models 
($60M)

HPC and GPU/TPU 
Clusters for Model 
Training

$40M Creating specialized hardware for training 
large-scale materials models.

Model Development 
and Benchmarking 
Staff

$20M Hiring skilled staff to adapt model architectures 
to materials science.

3. Self-Driving Labs 
Grand Challenge 
($170M)

Program Office and 
Administration

$10M Hiring staff to define challenge rules, criteria, 
and prize mechanisms.

Competitive Awards 
for Proof-of-Concept 
Labs

$100M Funding for small-scale, fully automated self-
driving labs.

Testing, Evaluation, 
and Scale-Up

$40M Evaluating pilot labs and scaling successful 
ones into permanent facilities.

Robotics and 
Hardware R&D Grants

$20M Funding new robotic hardware and AI 
orchestration software for lab automation.

Total Estimated Cost $360M Total funding over approximately five years 
for data infrastructure, modeling capacity, and 
automated lab facilities to accelerate materials 
science discovery.

Source: Author’s analysis



MERCATUS CENTER AT GEORGE MASON UNIVERSITY

18

This report touches on themes that are likely to be seen as AI transforms other domains of science, 
and even other areas of economic life altogether. AI models—whether narrow models trained to 
predict the energy of a crystal or generalist models meant to mimic human intelligence—can pro-
duce insights and ideas. But they cannot make those things into reality. And their predictions will 
only be as good as the data they are fed. 

Without systematic changes to the way we conduct materials science, new ideas will be held 
back by the bottlenecks of the past. Without new approaches to sharing data and information, AI 
models in the US will be inherently impoverished. Inevitably, other countries will change their 
institutions to maximize the value of AI, and if the US does not keep up, it will be left behind. 
The US today leads in innovation at the frontier of AI, but those innovations mean little if they 
are not used as widely and creatively as possible. There is nothing easy about broad diffusion of 
a powerful general- purpose technology that fundamentally challenges long- held assumptions. 
Yet this is the task the United States faces. Whether we seize the opportunity or shrink before it 
is our choice to make. 
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