Democratizing Policy Analytics with AutoML

Machine learning methods have made significant inroads in the social sciences. Computer algorithms now help scholars design cost-effective public policies, predict rare social events, and improve the allocation of funds. However, building and evaluating machine learning algorithms remain labor-intensive, error-prone tasks. Thus, areas that could benefit from modern computer algorithms are often held back owing to implementation challenges or lack of technical expertise. In this paper, I show how scholars can use automated machine learning (AutoML) tools to preprocess their data and create powerful estimation methods with minimal human input. I demonstrate the functionalities of three open-source, easy-to-use AutoML algorithms, and I replicate a well-designed forecasting model to highlight how researchers can achieve similar results with only a few lines of code.

Read more.

This paper is one of seven published as part of the Policy Analytics Symposium

Mercatus AI Assistant
Ask questions about this research.
GPT Logo
Mercatus AI Research Assistant
Ask questions about this research. Mercatus Chatbot AI More Details
Suggested Prompts:
Ask us anything. We use OpenAI's ChatGPT 4o base model to answer any question about Mercatus research.